2020大数据开发不完全通关指南.pdf

目前,国内外最火的莫过于大数据了,而国内的大数据应用多集中在互联网领域,有超过56%的企业在筹备发展大数据研究,“未来5年,94%的公司会需要数据科学家。”

数据科学家主要通过数据的价值挖掘,为企业提供更精准的决策依据。在电信、零售、金融、制造、物流、医疗、教育等行业当中大数据工程师已经在创造价值了。

《大数据人才报告》显示,目前全国的大数据人才仅46万,人才稀缺,但是稀缺的背后要求也不低。大数据工程师需要统计学、应用数学相关的能力背景,并且需要设计数据模型和算法。

而且还要:

1、熟悉Linux开发环境,熟悉Shell命令

2、熟悉Java、python、scala语言(至少一种)

3、具备较丰富的基于Hadoop、Map Reduce、Yarn、Storm、Spark、Hive、Hbase、kafka、Flume、HDFS、Spark Streaming等的大数据处理项目经验。

那么,如何才能掌握数据科学家的能力?今天给大家推荐一个 免费 福利——廖雪峰最新研磨的实战宝典如何将大数据开发做到优秀首次开放!内容出自开课吧 vip 课程“大数据高级开发实战班”,为帮助大家在职场上走得更加顺畅,现决定将这套价值 788元 的体系化学习宝典免费送给粉丝朋友。

如果你是刚转行大数据不久的Java、PHP等程序员或入行新人,这套学习宝典能帮你迅速摆脱工作困扰,巩固掌握优秀工程师的必会技能:

  • 缺乏工作经验,想短时期内接触学习大数据开发项目;

  • 接触不到核心技术,不懂底层源码,不会搭建系统架构,提升太难;

  • 业务逻辑欠缺,想丰富实战经验,进大厂冲击高薪。

一、高薪大数据工程师必备——实战项目经验

本部分选取当下各企业应用最广的项目,基于大厂脱敏数据,以 Spark 为主要核心框架,覆盖Kafka、Hbase 及 Hadoop 等大数据生态技术,理论与实际业务场景相结合,帮你 360 度探索大数据在出行领域的技术落地,了解大数据架构的设计奥秘,增加简历含金量

01

大数据背景下的智慧出行

通过学习,可帮你了解大数据背景下的出行业务,熟知大数据技术点的使用以及出行方面的业务逻辑。

项目可视化展示

1、智慧出行项目概况及车辆轨迹数据处理

技术关键词:

Flume、Kafka、SparkStreaming、Hbase、Redis、SpringBoot 等

主要内容:

  • 智慧出行大数据项目概述;

  • 项目需求及架构选型;

  • 开发项目模块构建;

  • 数据回放功能的实现;

  • 轨迹监控模块的开发。

斩获技能:

掌握 SparkStreaming 消费 Kafka 自主维护 Offset 的方式。

2、看大数据如何帮你抉择最合适的上车地点

技术关键词:

SparkCore 、SparkSQL、Hbase 、Phoenix 、SpringBoot

主要内容:

  • 虚拟车站的概念详情;

  • 虚拟车站的计算方式;

  • 使用代码实现虚拟车站的计算统计。

斩获技能:

  • 熟知常见的地图属性;

  • 掌握虚拟车站的计算方式;

  • 掌握API的使用等。

3、智慧出行项目展示及应用 + 大数据技术答疑

技术关键词:

Maxwell、Mysql、SparkStreaming、 Kafka、SparkSQL等

主要内容:

  • 智慧出行的其他功能模块开发;

  • Spark任务的监控以及任务的调优;

  • 业务数据库实时同步功能实现。

斩获技能:

  • 有一定的架构认知能力;

  • 掌握常见的大数据技术架构;

  • 能熟练驾驭使用其他大数据框架等。

01

二、优秀大数据工程师必会——扎实技能储备

本部分对 Spark、Hadoop 等主流框架做了专项讲解,可帮大家快速查漏补缺,巩固各技术要点,更好地匹配企业业务需求。这些都是高薪工程师必知必会技能,对你日后的职业规划,无论进阶提升或是进大厂都会有不小的帮助。

02

1、基于 Spark 源码自定义数据源开发

  • 如何解决 HBase 热点问题

  • 如何基于源码自定义开发 HBase 的数据源

  • 如何在数据源处进行列剪枝和谓词下推

2、Hadoop 分布式文件系统之 HDFS 架构

  • HDFS 是如何实现有状态的高可用架构

  • HDFS 是如何从架构上解决内存受限问题

  • 深入理解 HDFS 的架构演变

  • 揭秘 HDFS 如何能支撑亿级流量

3、实时计算技术之 SparkStreaming

  • Spark Streaming 应用场景、原理分析

  • Spark Streaming 集成 Kafka 讲解

  • Spark Streaming 如何实现 Exactly-Once 语义

02

适合谁学?

1. 拥有 0~1 年的工作经验,想转行大数据方向;

2. 有 1 年以上工作经验,从事搜索引擎、推荐系统、大数据开发、云计算等相关工作;

3. 在 Spark、Flume、Hbase、Kafka 等框架底层源码理解欠缺,想要在实际项目开发中提高系统性能的开发人员。

限时福利

1. 训练营原价 ¥788,本公众号粉丝限时 5 天 免费 (仅限前200名)

2. 本次报名的学员免费赠送一份配套源码教程。

如果你想真正提高大数据开发专业技能,跟上大数据时代发展,并想在大数据领域长久深耕,这套理论结合实战的价值788元的不可多得的实用宝典,都会是你很好的学习提升机会本公号粉丝仅限前200名 免费~

廖雪峰价值 788元 的大数据进阶宝典

限时5天 0元领取

本公众号仅限前200名

PS : 点击阅读原文,可以快速预约,预约成功后别忘记添加助理,方便领取干货内容!莫做收藏党!

最后,对于想要系统提升的Java、PHP、Python、嵌入式等1-5年编程开发经验的人,开课吧还邀请廖雪峰老师团队打造了《大数据高级开发实战班付费课程,感兴趣的小伙伴也可扫码咨询哦~

<p> <span style="color:#3D3D3D;">本教程为授权出品</span> </p> <p> <span style="color:#3D3D3D;"><br /> </span> </p> <p> <span style="color:#3D3D3D;"><span style="color:#404040;">一、课程简介</span><br /> <span style="color:#404040;">数据仓库(Data Warehouse,可简写为DW或DWH),是面向分析的集成化数据环境,为企业决策制定过程,提供系统数据支持的战略集合,是国内外各大公司正在重点投入的战略级技术领域。</span></span> </p> <p> <span style="background-color:#FFFFFF;"><br /> </span><span style="color:#404040;">二、课程内容</span><br /> <span style="color:#404040;">《大数据电商数仓项目实战》视频教程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。</span> </p> <p> <span style="background-color:#FFFFFF;"><br /> </span><span style="color:#404040;">三、课程目标</span><br /> <span style="color:#404040;">本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。</span> </p> <p> <span style="background-color:#FFFFFF;"><br /> </span><span style="color:#404040;">四、课程亮点</span><br /> <span style="color:#404040;">本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。</span> </p> <p> <br /> </p>
相关推荐
<span style="color:#404040;">如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。</span><br /><br /><span style="color:#404040;">打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。</span><br /><br /><span style="color:#404040;">整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统在电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。</span><br /><br /><span style="color:#404040;">适合人群:</span><br /><span style="color:#404040;">1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员</span><br /><span style="color:#404040;">2.Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员</span><br /><span style="color:#404040;">3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员</span><br /><span style="color:#404040;">4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员</span>
一、课程简介<br /> <br /> 随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据和各种业务数据,所以数据仓库技术是各大公司目前都需要着重发展投入的技术领域。数据仓库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据仓库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。<br /> <br /> 二、课程内容<br /> <br /> 本次精心打造的数仓项目的课程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。<br /> <br /> <br /> 三、课程目标<br /> <br /> 本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。<br /> <br /> 四、课程亮点<br /> 本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。<br /> <br /> <br /> <div> <br /> </div>
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页